

Responses of Circulating Fish Phagocytes to Paper Mill Effluent Exposure

I. Ahmad, M. Fatima, M. Athar, N. Z. Khan, S. Raisuddin 1

Received: 15 August 1998/Accepted: 9 November 1998

Identification of pollutant-sensitive biomarkers for the monitoring of aquatic pollution is a current thrust in the ecotoxicology research (Ahokos et al. 1976; Atchison et al. 1987; McCarthy and Shugart 1990). This approach has met with the successful development of early warning assays such as that of inhibition of $(\delta$ -aminolevulenic acid dehydratase (ALAD) by lead exposure in aquatic and terrestrial organisms (Hodson et al. 1977; Anderson 1988). Immune system biomarkers though do not fall in the specific category, they have demonstrated their utility in the pollution monitoring programs (Bekesi et al. 1979; Lee and Chang 1985). Pollutant-induced immune function alterations reflect the toxic potential of the pollutant towards the immune system on one hand and the health status of the affected organism on the other. A slight misappropriate functioning of the immune system would predispose the host towards the disease causing including microbial pathogenicity. We have undertaken investigations to evaluate fish immune system under the environmental chemical induced stress. In the present paper, we report the investigations on the freely circulating phagocytes (macrophages) of an air-breathing catfish, Heteropneustes fossilis Bloch. The circulatory cells of fish hemopoaetic system, in particular those behaving like phagocytes provide defense against invading agents (Zeeman and Brandley 1981; Manning 1994). These cells are also potential targets of environmental toxicants encountered by the fish. We investigated short-term and long-term responses of circulating phagocytes of fish peritoneal cavity and those found adhered to gills towards exposure to paper mill effluent, which is a complex mixture of organic and inorganic pollutants (Hamm et al. 1986; Suntio et al. 1988; van den Heuvel et al. 1995).

MATERIALS AND METHODS

Fish stock of *Heteropneustes fossilis* (Bloch) of both sexes were obtained from natural resources and were kept in glass aquarium measuring 12 in. X 12 in. X 24 in. Fish were acclimatized for fifteen days before use in chlorine free tap water and were hand fed on fresh autoclaved goat liver meat. Healthy fishes were divided into four large groups. Three groups of

Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110 062, India

²Department of Chemistry, Jamia Hamdard (Hamdard University), New Delhi 110 062, India

fishes were exposed to different concentrations (0.5, 1.0, 2.0% v/v) of paper mill effluent collected from the neighboring paper mill installations. Fourth group served as control without effluent exposure. The effluent and water change was made every other day. Fish were sacrificed at the intervals of 15, 30, 60 and 90 days.

In order to study the activation pattern of phagocytes of fish, normal fish were challenged with 3% thioglycollate medium (E. Merck, Bombay) injected intraperitoneally. On the third day phagocytes were collected from the treated and control fish (injected with normal saline). For collection of phagocytes, fish were anaesthetized with MS-222 (3-aminobenzoic acid ethyl ester, Sigma Chem. Co., USA) and the caudal vein was severed to avoid the contamination of red blood cells in cell preparations. An abdominal incision was made and peritoneal cavity and gill were thoroughly rinsed with cold Hank's balanced salt solution (HBSS pH-7.2) in separate petri dishes, kept in incubator for one hour for adherence. Supernatant from these dishes was decanted and cells were detached with the help of a cell scraper in fresh cold HBSS. Detached cells were centrifuged in siliconized tubes at 2500 rpm for 10 min (X 3) and the final cell pellet resuspended in 1 mL of medium RPMI-1640. Cells were counted by using a hemocytometer. The cell viability was determined using trypan blue dye exclusion method (Raisuddin et al. 1993). Differential counts were performed to assess the population of macrophages in the cell suspension.

For evaluation of *in vitro* cytotoxic potential of paper mill effluent, cells were exposed to different concentrations (5, 10, 20, 50, 100% v/v) of paper mill effluent. Cells obtained from both the sources of normal fishes were suspended in RPMI-1640 (pH 7.2) containing 5% fetal calf serum (FCS) and a concentration of $6x10^6$ cells/ml was obtained. An aliquot of 1 mL of above suspension was mixed with 1 mL of paper mill effluent in phosphate buffer saline (PBS, pH 7.2) to achieve the desired concentrations. They were incubated at 37 °C in a metabolic shaking water bath for 4 hr. Cell viability in each set of tubes was determined using trypan blue exclusion method.

Phagocytic activity of phagocytes was evaluated using the suspension assay as described by Fujiki and Yano (1997) with some modification. Briefly, 0.lmL aliquot of $10x10^6$ cells/ml density in RPMI-1640 medium was mixed with 0.lml of medium containing 20% FCS and $100x10^6$ cells/ml of heat treated (at 100 °C for 1 hr) yeast cells. The mixture was incubated at 35 °C for one hour with occasional shaking. After incubation, 50μ L volume of this mixture was smeared on glass slide, air-dried and stained with Wright-Giemsa stain. The slides were observed under a light microscope (Olympus BX40) using oil immersion. At least 500 cells were counted. Phagocytic activity was expressed as phagocytic index and phagocytic capacity. Results of each study were statistically analyzed using student's 't' test. The level of significance was set at p<0.05.

RESULTS AND DISCUSSION

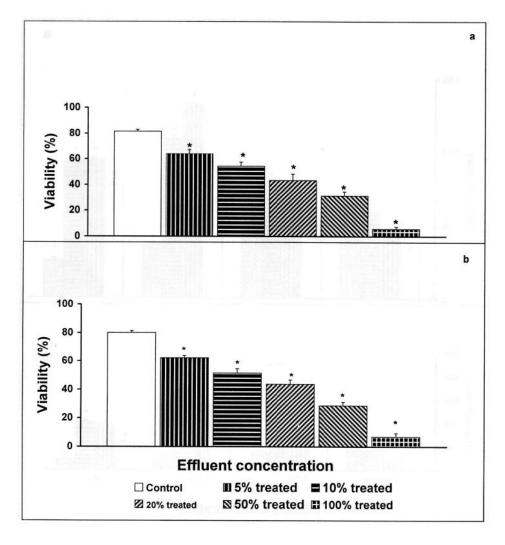

It was observed that a significant number of cells isolated from peritoneum and those adhered to gills behave like phagocytes. Challenge with thioglycollate medium induced a significant (p <0.001) increase in the cell numbers obtained from gill and peritoneum (Table 1). Such observation is identical to that observed in rodents (Eduardo et al. 1995). A substantial number of cells were adhered to petri-plates that were assumed phagocytes because of their inherent adhering property. *In vitro* cytotoxicity study showed that cells isolated from both the sites, i.e. peritoneum and gill respond in a dose-dependent manner (Figure 1). Paper mill effluent was toxic to cells at all the concentration levels.

Table 1. Population of inactivated and activated phagocytes isolated from peritoneum and gills of normal fish.

Peritoneal exudate cells					
Inactivated cells			Activated cells		
Total number of cells (x10 ⁶)	Adhered phagocytes (x10 ⁶)	%age of adhered phagocytes	Total number of cells (x10 ⁶)	Adhered phagocytes (x10 ⁶)	%age of adhered phagocytes
16.88±1.040	5.28±0.268	31.27	22.56 ±0.300	8.86±0.169	39.27
Gill adhered cells					
23.88±0.570	7.28±0.259	30.48	28.49*±0.228	10.88±0.286	38.18

^{*=}p<0.001

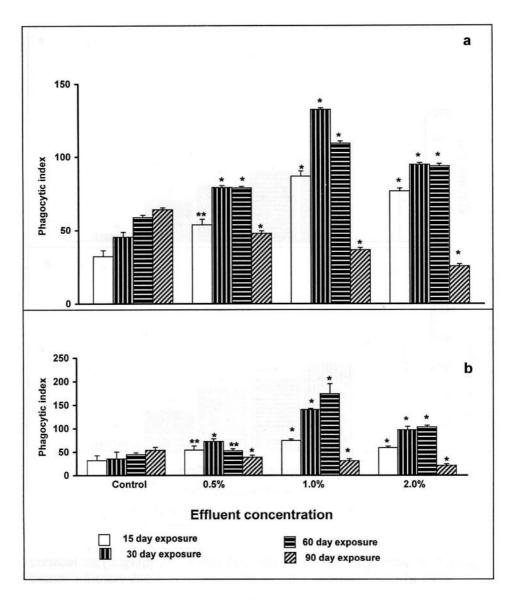
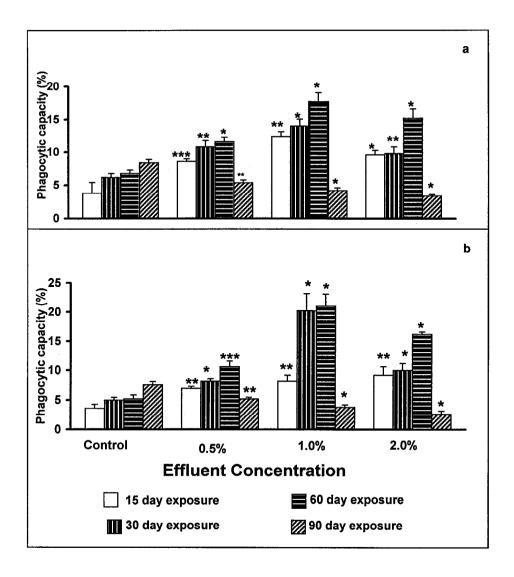

As regards phagocytic response, it was observed that there was an initial stimulation of phagocytes as demonstrated by significantly increased phagocytic index and phagocytic capacity (p <0.001). This stimulation was more pronounced at the concentration levels of 0.5 and 1% (Figure 2, 3). Long-term exposure, however, induced a suppressive effect, as there was significant (p <0.001) reduction of phagocytic index as well as phagocytic capacity after an exposure of 90 days (Figure 2, 3). An almost identical pattern of response was observed for the phagocytes isolated from both the sites. It may be assumed that they have same lineage. Our electron microscopy studies also confirm this assumption as cells from both the sites characteristics (presented in other show similar morphological communication). It, however, would be inappropriate, if a parallel is drawn between gill adhered phagocytes of fish and mammalian alveolar macrophages. Due to circulatory nature of fish hemopoaetic system the

Figure 1. *In vitro* cytotoxicity of paper mill effluent in phagocytes isolated from **a)** peritoneum and **b)** gill of normal fish. Cells were incubated for 4 hr at 37 °C. The cell viability was determined using trypan blue dye exclusion method. * = p < 0.001 when compared with control group (n=6).


phagocytes tend to reach various tissues sites more in numbers at the site of stimulus. Since fish gills contiguously receive, water full of antigenic and particulate material, presence of a large number of phagocytes at this tissue seems plausible (Flano et al. 1997).

Paper and pulp mill effluent contains complex mixture of dissolved lignin and cellulose degradation products, various other wood extracts and chlorinated organic compounds. It is characterized by high concentration of heavy metals, total suspended solids, high pH, increased chemical oxygen

Figure 2. Effect of paper mill effluent on phagocytic index of fish phagocytes isolated from **a)** peritoneum **b)** gill. Phagocytic index was calculated using the formula A x B where A= percentage of phagocytes engulfing atleast two yeast cells; B= average number of yeast cells engulfed by phagocytosis positive cells. *=p<0.001, ** = p<0.01 when compared with control group (n=5).

demand and low dissolved oxygen that apparently increases the biological oxygen demand. Heavy metals include mercury, cadmium, lead, chromium, copper and zinc (Hamm et al. 1986; Suntio et al. 1988). Some of these constituents such as heavy metals have toxic potential while others including lignin and cellulosic material may temporarily stimulate the

Figure 3. Effect of paper mill effluent on phagocytic capacity of fish phagocytes isolated from **a)** peritoneum and **b)** gill. Phagocytic capacity expressed as mean percentage of cells engulfing 2 four heat-treated yeast cells. * = p < 0.001, *** = p < 0.01, *** = 0.02 when compared with control group (n=5).

immune cells mainly because of their characteristic chemical composition. Toxic potentials of several of these constituents have been reported by Wong et al. (1992) and Voccia et al. (1994). The initial stimulation of phagocytes may be attributed to the exposure to cellulosic and lignocellulosic components of paper mill effluent which because of their molecular size may act as elicitor of phagocytes (Blazer 1991). Long term exposure resulting in bioaccumulation of toxic heavy metals seems to

overwhelm the activated state of phagocytes (Zelikoff 1993). Fish phagocytes (macrophages) are involved in nonspecific and specific immune reactions, such as phagocytic killing of microorganisms and antigen presentation (Ellis 1977; Zelikoff et al. 1991). These vital functions can be altered by numerous environmental, nutritional and physiological factors (Fletcher 1986). Long term exposure to paper mill effluent will definitely augment the disease development. It is concluded that a biological response to an environmental pollutant largely depends on the type of pollutant in question. The level and duration of exposure also play important role and a holistic approach has to be adopted while designating a particular biological response as biomarker of pollution.

Acknowledgments We thank Prof. Allauddin Ahmad, the Vice-chancellor of University for providing the necessary facility to carry out this work. The work has been financially supported by the Indian Council of Agricultural Research. We thank Mr. Tariq Hameed for his help in preparation of this manuscript. Technical assistance of Mr. S. Razi Ahmad is also acknowledged.

REFERENCES

- Ahokos JT, Karki NT, Qikari A, Soivio A (1976) Mixed function monooxygenase of fish as an indicator of pollution of aquatic environment by industrial effluent. Bull Environ Contam Toxicol 16:270-274
- Anderson T, Forlin L, Hardig J, Larson A (1988) Physiological disturbances in fish living in coastal water polluted with bleached kraft pulp mill effluent. Can J Fish Aquat Sci 45:1525-1536
- Atchison GJ, Henery MG, Sanheinrich MB (1987) Effects of metals on fish behaviour: A review. Environ Biol Fish 18:11-25
- Bekesi JG, Anderson HA, Roboz J, Fischbein A, Selikoff IJ, Holland JF (1979) Immunological dysfunction among PBB-exposed Michigan dairy farmers. Ann NY Acad Sci 320:717-728
- Blazer VS (1991) Piscine macrophage function and nutritional influences: A review. J Aquat Anim Hlth 3:77-86
- Eduardo MS, Michael RD, Cesar C, Arthur C, Fu Y, Diana ML (1995)
 Decreased macrophages- mediated cytotoxicity in mammary-tumorbearing mice is related to alteration of nitric-oxide production and /or
 release. Int J Cancer 60:660-667
- Ellis AE (1977) The leucocytes of fish: A review. J Fish Biol 11:453-491
- Flano E, Lopez-Fierro P, Razquin BE, Villena A (1997) In vitro proliferation of eosinophilic granular cells in gill cultures from rainbow trout . Fish Shellfish Immunol 7:519-521
- Fletcher TC (1986) Modulation of nonspecific host defenses in fish. Vet Immunol Immunopath 12:59-67
- Fujiki K, Yano T (1997) Effects of sodium alginate on the non-specific defence system of the common carp (*Cyprinus carpio* L.). Fish Shellfish Immunol 7:417-427

- Fujiki K, Yano T (1997) Effects of sodium alginate on the non-specific defence system of the common carp (*Cyprinus carpio* L.). Fish Shellfish Immunol 7:417-427
- Hamm V, Geller A, Gottsching L (1986) Heavy metals in wood, virgin pulp, waste paper and paper. Papier 40:V37-V46
- Hodson PV, Blunt BR, Spry DJ, Austen K (1977) Evaluation of erythrocyte δ -aminolevulenic acid dehydratase activity as short term indicator in fish of harmful exposures to lead. J Fish Res Board Can 34:501-508
- Lee TP, Chang KJ (1985) Health effects of polychlorinated biphenyls. In: Dean, JH, Luster ML, Munson, AE, Amos, H (eds), Immunotoxicology and immunopharmacology, Raven Press, New York, p 415
- Manning MJ (1994) Fishes. In: Turner RJ (ed) Immunology. A Comparative Approach. John Wiley & Sons, Ltd, Chichester, p 69
- McCarthy JF, Shugart LR (1990) Biological markers of environmental contamination. In: McCarthy, JF, Shugart, LR (eds) Biomarkers of environmental contamination, Lewis Publishers, Bocca Raton, p 3
- Raisuddin S, Singh KP, Zaidi SIA, Paul BN, Ray PK, (1993) Immunosuppressive effects of aflatoxin in growing rats. Mycopathologia 124:189-194
- Suntio LR, Shiu WY, Mackay D (1988) A review of the nature and properties of chemicals present in pulp mill effluents. Chemosphere 17:1249-1290
- van den Heuvel MR, Munkittrick GJ, Karaak VD, Servos MR, Dixon DG (1995) Hepatic 7-ethoxyresorufin-O-deethylase activity, plasma steroid hormone concentrations, and liver bioassay-derived 2,3,7,8-TCDD toxic equivalent concentrations in wild white sucker (*Catostomus commersoni*) caged in bleached kraft pulp mill effluent. Can J Fish Aquat Sci 52:1339-1350
- Voccia I, Krzystyniak K, Dunier M Flipo D Fournier M (1994) In vitro mercury-related cytotoxicity and functional impairment of the immune cells of rainbow trout (*Oncorhynchus mykiss*). Aquatic Toxicol 29:37-48
- Wong S, Fournier M, Coderre D, Banska W, Krzystyniak K (1992) Environmental immunotoxicology. In: Peakall D (ed) Animal biomarker as pollution indicators. Ecotoxicology Series 1, Chapman & Hall, London, p 167
- Zeeman MG, Brandley WA (1981) Effects of toxic agents upon fish immune systems: A review. In: Sharma, RP (ed) Immunological considerations in toxicology,vol. II, CRC Press, Bocca Raton, p 1
- Zelikoff JT, Enani AN, Bowser D, Squibb SK, Frinkei K (1991) Development of fish peritoneal macrophages as a model for higher vertebrates in immunological studies. I. Characterization of trout macrophage morphological, functional and biochemical properties. Fund Appl Toxicol 16:576-589
- Zelikoff JT (1993) Metal pollution-induced immunomodulation in fish. Ann Rev Fish Dis 2:305-325